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D.1 Structured Analysis and Formal Methods 
 
Structured Analysis became popular in the 1980’s and is still used by many.  The analysis consists of 
interpreting the system concept (or real world) into data and control terminology, that is into data flow 
diagrams.  The flow of data and control from bubble to data store to bubble can be very hard to track and 
the number of bubbles can get to be extremely large.  One approach is to first define events from the 
outside world that require the system to react, then assign a bubble to that event, bubbles that need to 
interact are then connected until the system is defined.  This can be rather overwhelming and so the 
bubbles are usually grouped into higher level bubbles.  Data Dictionaries are needed to describe the data 
and command flows and a process specification is needed to capture the transaction/transformation 
information.  The problems have been: 1) choosing bubbles appropriately, 2) partitioning those bubbles in 
a meaningful and mutually agreed upon manner, 3) the size of the documentation needed to understand 
the Data Flows, 4) still strongly functional in nature and thus subject to frequent change, 5) though “data” 
flow is emphasized,  “data” modeling is not, so there is little understanding of just what the subject matter 
of the system is about, and 6) not only is it hard for the customer to follow how the concept is mapped 
into these data flows and bubbles, it has also been very hard for the designers who must shift the DFD 
organization into an implementable format. 
 
Information Modeling, using entity-relationship diagrams, is really a forerunner for OOA.  The analysis 
first finds objects in the problem space, describes them with attributes, adds relationships, refines them 
into super and sub-types and then defines associative objects.  Some normalization then generally occurs.  
Information modeling is thought to fall short of true OOA in that, according to Peter Coad & Edward 
Yourdon:     
 

1)  Services, or processing requirements, for each object are not addressed,  
2)  Inheritance is not specifically identified,  
3)  Poor interface structures (messaging) exists between objects, and  
4) Classification and assembly of the structures are not used as the predominate 

method for determining the system’s objects. 
 
This handbook presents in detail the two new most promising methods of structured analysis and design: 
Object-Oriented and Formal Methods (FM).  OOA/OOD and FM can incorporate the best from each of 
the above methods and can be used effectively in conjunction with each other.  Lutz and Ampo described 
their successful experience of using OOD combined with Formal Methods as follows:  “ For the target 
applications, object-oriented modeling offered several advantages as an initial step in developing formal 
specifications.  This reduced the effort in producing an initial formal specification.   We also found that 
the object-oriented models did not always represent the “why,” of the requirements, i.e., the underlying 
intent or strategy of the software.   In contrast, the formal specification often clearly revealed the intent of 
the requirements.” 
 

D.2 Object Oriented Analysis and Design 
 
Object Oriented Design (OOD) is gaining increasing acceptance worldwide.   These fall short of full 
Formal Methods because they generally do not include logic engines or theorem provers.   But they are 
more widely used than Formal Methods, and a large infrastructure of tools and expertise is readily 
available to support practical OOD usage. 
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OOA/OOD is the new paradigm and is viewed by many as the best solution to most problems.  Some of 
the advantages of modeling the real world into objects is that 1) it is thought to follow a more natural 
human thinking process and 2) objects, if properly chosen, are the most stable perspective of the real 
world problem space and can be more resilient to change as the functions/services and data & 
commands/messages are isolated and hidden from the overall system.   For example, while over the 
course of the development life-cycle the number, as well as types, of functions (e.g. turn camera 1 on, 
download sensor data, ignite starter, fire engine 3, etc.)  May change, the basic objects (e.g. cameras, 
sensors, starter, engines, operator, etc.) needed to create a system usually are constant.  That is, while 
there may now be three cameras instead of two, the new Camera-3 is just an instance of the basic object 
‘camera’.  Or while an infrared camera may now be the type needed, there is still a ‘camera’ and the 
differences in power, warm-up time, and data storage may change, all that is kept isolated (hidden) from 
affecting the rest of the system. 
 
OOA incorporates the principles of abstraction, information hiding, inheritance, and a method of 
organizing the problem space by using the three most “human” means of classification.   These combined 
principles, if properly applied, establish a more modular, bounded, stable and understandable software 
system. These aspects of OOA should make a system created under this method more robust and less 
susceptible to changes, properties which help create a safer software system design. 
   
Abstraction refers to concentrating on only certain aspects of a complex problem, system, idea or 
situation in order to better comprehend that portion.  The perspective of the analyst focuses on similar 
characteristics of the system objects that are most important to them.  Then, at a later time, the analyst can 
address other objects and their desired attributes or examine the details of an object and deal with each in 
more depth.   Data abstraction is used by OOA to create the primary organization for thinking and 
specification in that the objects are first selected from a certain perspective and then each object is defined 
in detail.   An object is defined by the attributes it has and the functions it performs on those attributes.  
An abstraction can be viewed, as per Shaw, as “a simplified description, or specification, of a system that 
emphasizes some of the system’s details or properties while suppressing others.  A good abstraction is 
one that emphasizes details that are significant to the reader or user and suppresses details that are, at least 
for the moment, immaterial or diversionary”. 
 
Information hiding also helps manage complexity in that it allows encapsulation of requirements, which 
might be subject to change.  In addition, it helps to isolate the rest of the system from some object specific 
design decisions.  Thus, the rest of the s/w system sees only what is absolutely necessary of the inner 
workings of any object. 
   
Inheritance “ defines a relationship among classes [objects], wherein one class shares the structure or 
behavior defined in one or more classes... Inheritance thus represents a hierarchy of abstractions, in which 
a subclass [object] inherits from one or more superclasses [ancestor objects].  Typically, a subclass 
augments or redefines the existing structure and behavior of its superclasses”.   
 
Classification theory states that humans normally organize their thinking by: looking at an object and 
comparing its attributes to those experienced before (e.g. looking at a cat, humans tend to think of its size, 
color, temperament, etc. in relation to past experience with cats) distinguishing between an entire object 
and its component parts (e.g., a rose bush versus its roots, flowers, leaves, thorns, stems, etc.) 
classification of objects as distinct and separate groups (e.g. trees, grass, cows, cats, politicians). 
 
In OOA, the first organization is to take the problem space and render it into objects and their attributes 
(abstraction).  The second step of organization is into Assembly Structures, where an object and its parts 
are considered.  The third form of organization of the problem space is into Classification Structures 
during which the problem space is examined for generalized and specialized instances of objects 
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(inheritance).  That is, if looking at a railway system the objects could be engines (provide power to pull 
cars), cars (provide storage for cargo), tracks (provide pathway for trains to follow/ride on), switches 
(provide direction changing), stations (places to exchange cargo), etc.  Then you would look at the 
Assembly Structure of cars and determine what was important about their pieces parts, their wheels, floor 
construction, coupling mechanism, siding, etc.  Finally, Classification Structure of cars could be into 
cattle, passenger, grain, refrigerated, and volatile liquid cars. 
 
The purpose of all this classification is to provide modularity which partitions the system into well 
defined boundaries that can be individually/independently understood, designed, and revised. However, 
despite “classification theory”, choosing what objects represent a system is not always that straight 
forward.  In addition, each analyst or designer will have their own abstraction, or view of the system 
which must be resolved.  OO does provide a structured approach to software system design and can be 
very useful in helping to bring about a safer, more reliable system. 

D.3   Formal Methods - Specification Development 
 
“Formal Methods  (FM) consists of a set of techniques and tools based on mathematical modeling and 
formal logic that are used to specify and verify requirements and designs for computer systems and 
software.” 
 
While Formal Methods (FM) are not widely used in US industry, FM has gained some acceptance in 
Europe.  A considerable learning curve must be surmounted for newcomers, which can be expensive.   
Once this hurdle is surmounted successfully, some users find that it can reduce overall development life-
cycle cost by eliminating many costly defects prior to coding. 
 
WHY ARE FORMAL METHODS NECESSARY? 
 
 A digital system may fail as a result of either physical component failure, or design errors. The validation 
of an ultra-reliable system must deal with both of these potential sources of error. 
 Well known techniques exist for handling physical component failure; these techniques use redundancy 
and voting.  The reliability assessment problem in the presence of physical faults is based upon Markov 
modeling techniques and is well understood. 
 
 The design error problem is a much greater threat. Unfortunately, no scientifically justifiable defense 
against this threat is currently used in practice. There are 3 basic strategies that are advocated for dealing 
with the design error: 
 
1.  Testing (Lots of it) 
 
2.  Design Diversity (i.e. software fault-tolerance: N-version programming, recovery blocks, etc.) 
 
3.  Fault/Failure Avoidance (i.e. formal specification/verification, automatic program synthesis, 

reusable modules) 
 
The problem with life testing is that in order to measure ultrareliability one must test for exorbitant 
amounts of time. For example, to measure a 10-9 probability of failure for a 1-hour mission one must test 
for more than 114,000 years. 
 
Many advocate design diversity as a means to overcome the limitations of testing. The basic idea is to use 
separate design/implementation teams to produce multiple versions from the same specification. Then, 
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non-exact threshold voters are used to mask the effect of a design error in one of the versions. The hope is 
that the design flaws will manifest errors independently or nearly so. 
 
By assuming independence one can obtain ultra-reliable-level estimates of reliability even though the 
individual versions have failure rates on the order of 10-4. Unfortunately, the independence assumption 
has been rejected at the 99% confidence level in several experiments for low reliability software.  
Furthermore, the independence assumption cannot ever be validated for high reliability software because 
of the exorbitant test times required. If one cannot assume independence then one must measure 
correlations. This is infeasible as well---it requires as much testing time as life-testing the system because 
the correlations must be in the ultra-reliable region in order for the system to be ultra-reliable. Therefore, 
it is not possible, within feasible amounts of testing time, to establish that design diversity achieves ultra-
reliability. 
 
Consequently, design diversity can create an illusion of ultra-reliability without actually providing it. 
 
It is felt that formal methods currently offer the only intellectually defensible method for handling the 
design fault problem. Because the often quoted 1 - 10-9 reliability is well beyond the range of 
quantification, there is no choice but to develop life-critical systems in the most rigorous manner available 
to us, which is the use of formal methods. 
 
WHAT ARE FORMAL METHODS? 
 
Traditional engineering disciplines rely heavily on mathematical models and calculation to make 
judgments about designs. For example, aeronautical engineers make extensive use of computational fluid 
dynamics (CFD) to calculate and predict how particular airframe designs will behave in flight. We use the 
term formal methods to refer to the variety of mathematical modeling techniques that are applicable to 
computer system (software and hardware) design. That is, formal methods is the applied mathematics 
engineering and, when properly applied, can serve a role in computer system design.  
 
Formal methods may be used to specify and model the behavior of a system and to mathematically verify 
that the system design and implementation satisfy system functional and safety properties.  These 
specifications, models, and verifications may be done using a variety of techniques and with various 
degrees of rigor. The following is an imperfect, but useful, taxonomy of the degrees of rigor in formal 
methods: 
 
Level-1: Formal specification of all or part of the system. 
Level-2: Formal specification at two or more levels of abstraction and paper and pencil proofs that 

the detailed specification implies the more abstract specification.        
Level-3:  Formal proofs checked by a mechanical theorem prover. 
 
Level 1 represents the use of mathematical logic or a specification language that has a formal semantics to 
specify the system. This can be done at several levels of abstraction. For example, one level might 
enumerate the required abstract properties of the system, while another level describes an implementation 
that is algorithmic in style. 
 
Level 2 formal methods goes beyond Level 1 by developing pencil-and-paper proofs that the more 
concrete levels logically imply the more abstract-property oriented levels. This is usually done in the 
manner illustrated below. 
 
Level 3 is the most rigorous application of formal methods.  Here one uses a semi-automatic theorem 
prover to make sure that all of the proofs are valid. The Level 3 process of convincing a mechanical 
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prover is really a process of developing an argument for an ultimate skeptic who must be shown every 
detail. 
 
Formal methods is not an all-or-nothing approach. The application of formal methods to only the most 
critical portions of a system is a pragmatic and useful strategy.  Although a complete formal verification 
of a large complex system is impractical at this time, a great increase in confidence in the system can be 
obtained by the use of formal methods at key locations in the system.   

D.3.1  Formal Inspections of Specifications 
 
Formal inspections and formal analysis are different. Formal Inspections should be performed within 
every major step of the software development process. 
   
Formal Inspections, while valuable within each design phase or cycle, have the most impact when applied 
early in the life of a project, especially the requirements specification and definition stages of a project. 
Studies have shown that the majority of all faults/failures, including those that impinge on safety, come 
from missing or misunderstood requirements.  Formal Inspection greatly improves the communication 
within a project and enhances understanding of the system while scrubbing out many of the major 
errors/defects. 
 
For the Formal Inspections of software requirements, the inspection team should include representatives 
from Systems Engineering, Operations, Software Design and Code, Software Product Assurance, Safety, 
and any other system function that software will control or monitor.  It is very important that software 
safety be involved in the Formal Inspections. 
 
It is also very helpful to have inspection checklists for each phase of development that reflect both generic 
and project specific criteria. The requirements discussed in this section and in Robyn R. Lutz's paper 
"Targeting Safety-Related Errors During Software Requirements Analysis" will greatly aid in establishing 
this checklist.  Also, the checklists provided in the NASA Software Formal Inspections Guidebook are 
helpful. 

D.3.2  Timing, Throughput And Sizing Analysis 
 
Timing and sizing analysis for safety critical functions evaluates software requirements that relate to 
execution time and memory allocation.  Timing and sizing analysis focuses on program constraints.  
Typical constraint requirements are maximum execution time and maximum memory usage.   The safety 
organization should evaluate the adequacy and feasibility of safety critical timing and sizing 
requirements.  These analyses also evaluate whether adequate resources have been allocated in each case, 
under worst case scenarios.  For example, will I/O channels be overloaded by many error messages, 
preventing safety critical features from operating. 
 
Quantifying timing/sizing resource requirements can be very difficult.  Estimates can be based on the 
actual parameters of similar existing systems. 
Items to consider include:   
 
 •  memory usage versus availability; 
 •  I/O channel usage (load) versus capacity and availability; 
 •  execution times versus CPU  load and availability; 
 •  sampling rates versus rates of change of physical  parameters. 
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In many cases it is difficult to predict the amount of computing resources required.   Hence, making use 
of past experience is important. 

D.3.3  Memory usage versus availability 
 
Assessing memory usage can be based on previous experience of software development if there is 
sufficient confidence.   More detailed estimates should evaluate the size of the code to be stored in the 
memory, and the additional space required for storing data and scratchpad space for storing interim and 
final results of computations.   Memory estimates in early program phases can be inaccurate, and the 
estimates should be updated and based on prototype codes and simulations before they become realistic.  
Dynamic Memory Allocation can be viewed as either a practical memory run time solution or as a 
nightmare for assuring proper timing and usage of critical data.  Any suggestion of Dynamic Memory 
Allocation, common in OOD, CH environments, should be examined very carefully; even in “non-
critical” functional modules. 

D.3.3.1  I/O channel usage (Load) versus capacity and availability 
 
Address I/O for science data collection, housekeeping and control.  Evaluate resource conflicts between 
science data collection and safety critical data availability.  During failure events, I/O channels can be 
overloaded by error messages and these important messages can be lost or overwritten. (e.g. the British 
“Piper Alpha” offshore oil platform disaster).  Possible solutions includes, additional modules designed to 
capture, correlate and manage lower level error messages or errors can be passed up through the calling 
routines until at a level which can handle the problem; thus, only passing on critical faults or 
combinations of faults, that may lead to a failure. 
 
Execution times versus CPU load and availability.  Investigate time variations of CPU load, determine 
circumstances of peak load and whether it is acceptable.  Consider multi-tasking effects.   Note that 
excessive multi-tasking can result in system instability leading to “crashes”. 

D.3.3.2  Sampling rates versus rates of change of physical  parameters 
 
Analysis should address the validity of the system performance models used, together with simulation and 
test data, if available. 


